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Advanced glycation end products
and diabetic complications: A General overview
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ABSTRACT

Diabetes mellitus, especially type 2 diabetes is increasing at an alarming rate reaching epi-
demic proportions. Although hyperglycemia has been considered as playing an important role
in the pathogenesis of diabetic complications, the mechanisms involved remain uncertain.
There are several theories as to how chronic hyperglycemia can lead to micro or macrovascu-
lar disease in diabetes, including the advanced glycation end product (AGE) theory. Evidence
for the effect of AGE in the development of diabetic angiopathy is derived not only from a
number of in vitro and in vivo studies exploring the role of AGE in different pathologies, but
also from studies demonstrating significant improvements of features of diabetic complica-
tions by anti-AGE agents. Although it is well established that AGE are involved in the patho-
genesis of diabetic complications, more studies are needed to elucidate the exact role of AGE
in this area. The use of the "new" and "old" anti-AGE agents will help both in the study of the
mechanisms involved and the therapeutic applications aiming at prevention or amelioration
of diabetic complications that still constitute a major problem with a life-threatening impact
for diabetic patients, worldwide.
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INTRODUCTION

Diabetes mellitus, especially type 2 diabetes, is
increasing at an alarming rate and is considered as
one of the main threats to human health in the 21st

century, in both developed and developing nations.1

More than 150 million people currently have diabe-
tes, and twice that number is at high risk of devel-
oping diabetes in the next 5-10 years,1 while type 2
diabetes in children and adolescents is considered
an emerging health problem.2

Most patients with diabetes develop microvas-
cular disease, while macrovascular disease is asso-
ciated with an increased morbidity and mortality
from coronary, cerebrovascular and peripheral vas-
cular events.3,4

A large body of evidence emerging mainly from
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the two landmark studies, the Diabetes Control and
Complications Trial (DCCT) and the United King-
dom Prospective Diabetes Study (UKPDS), indicate
that chronic hyperglycemia constitutes a major ini-
tiator of microvascular diabetic complications, but
the exact mechanisms have not yet been fully eluci-
dated.5-7

There are several, well-researched theories of
how chronic hyperglycemia can lead to micro or
macrovascular disease in diabetes including the ad-
vanced glycation end product (AGE) theory.7-10

Many in vitro and in vivo studies but also studies
using anti-AGE agents have demonstrated that
these chemically heterogeneous compounds are
known to have a wide range of chemical, cellular
and tissue effects implicated in the development and
progression of diabetic complications.8-10

This review will outline the nature, formation and
metabolism of AGE as well as evidence on their
pathogenic potential in type 2 diabetes-related com-
plications.

1. AGE SOURCES

AGE constitute a heterogenous group of mole-
cules formed by the nonenzymatic reaction of redu-
cing sugars, ascorbate and other carbohydrates with
amino acids, lipids and nucleic acids and through
lipid peroxidation as well.8-11 Although this process
takes place continuously within the body during age-
ing, it is extremely accelerated in diabetes.8-12

It should be emphasized, however, that a large
portion of these agents can be exogenous. Tobacco
smoke has already been recognized as an important
exogenous source of AGE.13 Recently, it has been
found that diet, especially the modern Western diet,
provides a relatively large portion of preformed
AGE and AGE-precursors.8-10 The ways that food
is processed for safety, conservation and improving
taste, flavor and appearance lead to the generation
of diverse unstable a-â-dicarbonyl derivatives of gly-
co- and lipoxidation reactions.14-17 Although, the ex-
act nature of various diet-derived AGE derivatives
has not yet been fully elucidated, recent studies
showed that åN-carboxymethyl-lysine (CML) and
methylglyoxal (MG) derivatives, which constitute

products of protein and lipid glycoxidation, are
present in most foods. A recent study, in which CML,
was estimated in over 200 common foods, showed
that AGE generation, although influenced by the
content and type of nutrients (fats>proteins>carbo-
hydrates), depended mainly on the specific condi-
tions applied, such as cooking method, humidity, ti-
me and temperature used through food processing.18

Exogenously �offered� AGE are absorbed in the
gastrointestinal tract (-10%) and delivered to the
liver and to other tissues, 1/3 is excreted in the urine,
and the remaining is involved in the AGE-related
pathology in diabetes.19-25

2. AGE METABOLISM AND INTERACTIONS

Despite intensive investigation, the elucidation
of the structure of specific AGE remains a prob-
lem. The different methods used in the various stu-
dies lead to nonconsistent and conflicting results.
Till now, there is no ideal way to measure various
AGE moieties. The currently used methods are
HPLC, chromatography, fluoresence and Elisa.

The term AGE, while referring to non-reactive
terminal products such as CML and pentosidine in
most studies, also includes many reactive interme-
diates or AGE-precursors such as 1- or 3- deoxy-
glucosone, MG and their derivatives.8-10,26

Circulating AGE levels reflect the equilibrium
between endogenous formation and catabolism, in-
cluding tissue degradation and renal elimination, as
well as the oral AGE intake.

At the tissue level, macrophages and other cel-
lular systems endocytose and degrade AGE via re-
ceptor or non-receptor pathways, resulting in the for-
mation of low molecular weight AGE peptides.8-10,26

These peptides undergo a variable degree of reab-
sorption and further catabolism in the proximal neph-
ron and the rest is excreted in the urine. Therefore,
effective elimination is dependent on normal renal
function.8-10,26,27

At the cellular level, there are intracellular pro-
tective systems which also limit the accumulation of
reactive AGE derivatives. For instance, MG is first
converted by glyoxalase-I to S-D-lactoylglutathione
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nephropathy, acting through many pathways includ-
ing AGE formation and action.7-10,26

AGE cross-links, with important matrix proteins
such as collagen, lead to changes of both their struc-
ture and function which is restored by the adminis-
tration of anti-AGE agents.31-33 Also, AGE interact
with the renin-angiotensin system, another poten-
tial mechanism for initiating renal disease.34. In ad-
dition, AGE induce cytokines, adhesion molecules,
chemokines, growth factors and oxidant stress pro-
duction which are involved in the pathogenesis of
diabetic nephropathy.35-39 The above data have been
supported by various in vitro and in vivo studies.

In vitro, AGE receptors have been found in re-
nal mesangial cells which bind AGE, resulting in
overproduction of matrix proteins, changes in the
expression of matrix metalloproteinases and protein-
ase inhibitors,40,41 induction of mesangial oxidative
stress and activation of protein kinase C-â.35 Vari-
ous types of preformed AGE-BSA, produced in cul-
tured human mesangial cells, resulted in vascular
endothelium growth factor (VEGF) and MCP-1
proteins secretion and apoptosis, events that were
prevented by N-acetylcysteine, an antioxidant pro-
posed as an anti-AGE agent.42

In vivo, increased glomerular basement mebrane,
mesangium, podocytes and renal tubular cells in asso-
ciation with increased AGE deposition were found
immunohistochemically in kidneys from normal and
diabetic rats, rising with age and more rapidly with
diabetes.42,43 In addition, short-term exogenous AGE
administration in normal, non-diabetic animals was
associated with increased production of basement
membrane components (e.g. collagen IV), extracel-
lular matrix regulatory factors (e.g. transforming
growth factor-beta), all consistent with the findings
of diabetic nephropathy.45,46 Furthermore, RAGE
overexpression in diabetic mice resulted in increased
albuminuria, elevated serum creatinine, renal hyper-
trophy, mesangial expansion and glomerulosclero-
sis compared to non-diabetic littermates,47 changes
that were restored by pharmacological blockade of
RAGE,48 while galectin-3 knock-out mice demon-
strated a significant protection against diabetic neph-
ropathy.49 In addition, anti-AGE agents (AGE inhi-
bitors and AGE-breakers) have been shown to

and then to D-lactate by glyoxalase-II.28

The above homeostatic systems, however, can be
overwhelmed in high AGE conditions such as dia-
betes and renal failure, especially when combined
with increased dietary AGE intake.27,29

AGE can cause tissue damage by two main path-
ways: they either form cross-links that disrupts the
structure and function of short and long-lived pro-
teins and lipids or they interact with specific and non-
specific for AGE cell surface receptors, leading to
altered intracellular events that induce oxidative
stress and inflammation.8-10,26

The AGE-receptor system, which includes, spe-
cific and non-specific for AGE receptors and a few
soluble binding proteins, seems to play an impor-
tant role in the AGE homeostasis. This system in-
volves AGE-R1, a 50kD protein, involved in ligand
endocytosis and processing, AGE-R2, a 80-90kD
protein, involved in early signalling and AGE-R3, a
30-35kD protein, contributing to both removal and
cell activation. There are also other important mol-
ecules such as RAGE, linked to cell activation main-
ly via oxidative stress induction, scavenger recep-
tors, class A (MSR-A) and class B (MSR-B) and
lysozyme, involved in cellular uptake and degrada-
tion of AGE. As in the case for other receptors, the
exact ligands to the AGE-receptors have not yet
been fully elucidated.8-10,26

3. AGE AND DIABETIC COMPLICATIONS

AGE have been considered as important patho-
genetic mediators in diabetes-related complications,
conventionally grouped as micro- or macroangio-
pathy.

3.a. AGE and microangiopathy

The term diabetic microangiopathy involves a
broad spectrum of dysfunctional changes in micro-
vascular beds such as retinas and kidneys, and a wide
range of tissues such as peripheral nerves and skin.

3.a.1. Nephropathy

Diabetic nephropathy is now a major cause of
end-stage renal disease.7,30 Although genetic suscep-
tibility plays a role in its pathogenesis, hyperglyce-
mia has been linked to the pathogenesis of diabetic
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diminish AGE accumulation in renal structures and
also diabetic nephropathy in experimental diabe-
tes.33,50,51

Human studies have shown increased CML,
pyralline and pentosidine deposition in the renal tis-
sue of diabetic subjects with or without end-stage
renal disease, increasing in parallel with the severi-
ty of nephropathy, as well as a significant reduction
of nephrin, an important regulator of the glomeru-
lar filter integrity.52,53 A diffuse upregulation of
RAGE expression in podocytes, colocalizing with
synaptopodin expression has been found in the glom-
eruli of patients with diabetic nephropathy.54

3.a.2 Retinopathy and eye complications

Diabetic retinopathy occurs in three fourths of
all persons with diabetes after more than 15 years
of the disease, and is considered as the most com-
mon cause of blindness.7,55 AGE have been involved
in the pathogenesis of diabetic retinopathy by al-
tering small vessel wall integrity and structure and
by inducing cytokines, growth factors and increased
oxidative stress.7-10,26,56-58

In vitro, retinal endothelial cells exposed to AGE
overproduced VEGF through oxidative stress induc-
tion, PKC pathway activation and abnormal endot-
helial nitric oxide synthase (eNOS) expression.59,60

Retinal organ cultures showed an increased glyoxal
induced CML formation in association with in-
creased apoptosis and cell death, restored by anti-
AGE agents and antioxidants.59

Increased AGE accumulation was also found in
diabetic rats after 8 months of diabetes, in vascular
basement membrane but also in the retinal peri-
cytes.57 In addition, exogenous AGE-albumin admin-
istration in non-diabetic animals accumulated
around and within the pericytes, colocalized with
AGE receptors inducing retinal vessel wall thick-
ening and loss of retinal pericytes.61,62

In humans, increased AGE accumulation dis-
tributed around blood vessels has been found in the
retinal vessels of diabetics, increasing with the seve-
rity of retinopathy.63 Glycation of vitreous collagen
was also found in vitreous from human donor eye-
balls.64 In addition, studies using anti-AGE agents

have further support the role of AGE in diabetic
retinopathy.65-68

Increased levels of glycosylation products have
also been found in cataract lenses,69-71 which have
been associated with abnormalities in the Na-K-
ATPase pump, leading to significant alterations in
lens membrane integrity and function and cataract
formation in diabetes, changes restored by pyruvate
administration.72-74

AGE have also been linked to the changes asso-
ciated with diabetic keratopathy through their ef-
fect in reducing corneal epithelial cell adhesion and
spreading.72,73

Furthermore, glycation of the vitreal collagen
fibrils leading to dissociation from hyaluronan and
resultant destabilization of the gel structure has been
associated with vitreous liquefaction and posterior
vitreous detachment in diabetes.75-77

3.a.3. Neuropathy

Diabetic neuropathy is encountered in about half
of all people with diabetes either as a polyneuropa-
thy or mononeuropathy.7,78 Glycation of cytoskele-
tal proteins, through structural or functional chang-
es of the nerve fibers, has been involved in the patho-
genesis of diabetic neuropathy.78-81

In vivo, a reduction in sensory motor conduction
velocities and nerve action potentials as well as in
peripheral nerve blood flow has been reported in
diabetic rats, which is prevented by pretreatment
with AGE inhibitors.82,83 In addition, increased AGE
accumulation has been described in cytoskeletal pro-
teins of the sciatic nerve of diabetic rats which de-
creased after islet transplantation.84

Furthermore, increased AGE accumulation has
been described in the cytoskeletal and myelin pro-
tein extracts of the sural and peroneal nerves of
human subjects, distributed in the cytoplasm of en-
dothelial cells, pericytes, axoplasm and Schwan in-
terstitial collagens and basement membranes of the
perineurium cells of both myelinated and unmyeli-
nated fibers correlated with the myelinated fiber
loss.85,86 In addition, AGE accumulation in the vasa
nervorum has been linked to segmental demyelina-
tion by causing vascular abnormalities.87
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Furthermore, increased circulating AGE levels
and increased vascular tissue AGE deposition as-
sociated with impaired endothelium dependent and
endothelium-independent vasodilatation and in-
creased arterial stiffness have been found in diabet-
ic patients, restored by the administartion of anti-
AGE agents.112,113

4. ANTI-AGE STRATEGIES

Several approaches seeking to reduce AGE in-
teractions, either by inhibiting AGE formation,
blocking AGE action or breaking pre-existing AGE
cross-links, have been explored.

Glycemic Control. Hyperglycemia has been
linked to increased AGE formation, making obvi-
ous that the achievement of a good metabolic con-
trol can reduce the total body AGE pool. Indeed,
lower levels of AGE and decreased collagen-linked
glycosylation have been demonstrated in diabetic
rats with good compared to bad metabolic control.114

In addition, lower skin collagen glycosylation has
been found in a large group of diabetic patients un-
der intensive versus conventional treatment, in the
Diabetes Control and Complications Trial.115

Dietary modification. Diet has been considered
as an important exogenous source of AGE making
obvious that dietary modification in terms of con-
suming diets with low AGE content can decrease
the total body AGE pool and AGE-related patholo-
gy.8-10,19-25

Antioxidants. Although various antioxidants
have been proposed as anti-AGE agents, further
studies are needed in order to establish the effective-
ness of this treatment in reducing AGE levels.116-122

Anti-AGE agents. The first class of those agents
involved the inhibitors of AGE formation which act
by inhibiting post-Amadori advanced glycation re-
actions or by trapping carbonyl intermediates and
thus inhibiting both advanced glycation and lipoxi-
dation reactions. Aminoguanidine,123,124 ALT-
946,124,125 2-3-Diaminophenazine,126 thiamine pyro-
phosphate,127 benfotiamine128 and pyridoxamine,129

ORB-9195130 constitute known representatives of
this group of agents. The second class of those agents
involved the AGE breakers, which �break� pre-ac-

3.a.4. Dermopathy

Various studies have shown an increased accumu-
lation of various glycosylation products in the skin
in diabetes which alters its physicochemical structu-
re, leading to diabetes skin-related disorders.24,88-90

Furthermore, AGE have been implicated in the patho-
genesis of delayed wound healing in diabetes.24,91-94

3.b. AGE and macroangiopathy

The term macrovascular disease in diabetes in-
cludes atherosclerosis and increased stiffness of the
arterial wall mediated by the interplay of various
factors including AGE.8-10

In vitro studies have shown that AGE form in-
tra- and intermolecular cross-links with matrix pro-
teins in the vascular wall increasing vessel rigidity,
trapping lipoproteins within the arterial wall and
disrupting its clearance.95-97

Glycated LDL has also been shown to stimulate
production of plasminogen activator inhibitor-1
(PAI-1) and to reduce generation of tissue plasmi-
nogen activator (tPA) in cultured human vascular
endothelial cells.98 Glycated HDL has also been
linked to decreased ability to prevent monocyte ad-
hesion to aortic endothelial cells,99 while lipopro-
tein(a) glycation has been shown to increase PAI-1
production and decrease t-PA generation.100,101 AGE
interaction with endothelial cell receptors has shown
to induce increased vascular permeability, procoag-
ulant activity, migration of macrophages and T-lym-
phocytes into the intima and impairment of endot-
helium-dependent relaxation.102

In vivo, an increased AGE deposition has been
described in aortic atherosclerotic lesions, correlat-
ed with the degree of atheroma,103 events which were
restored by using anti-AGE agents.104,105

An increased AGE deposition has also been
found in the atherosclerotic plaque in vessels from
diabetic patients106,107 and in the radial artery wall of
chronic renal failure patients with or without diabe-
tes.108,109 In addition, an increased tissue AGE accu-
mulation and AGE receptors with a similar distri-
bution pattern associated with an increased aortic
stiffness have been found in human aortas obtained
from post-portem examination of diabetic sub-
jects.110,111
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tatives of this group of agents.33,132

Other agents. Recently, it has been shown that
antihypertensive drugs such as losartan, olmesartan,
and hydralazine, seem to inhibit AGE formation.133-135

CONCLUSION

It is well established that AGE are involved in
the pathogenesis of diabetic complications. Howev-
er, more studies are needed to elucidate the exact
role of AGE in this area. The use of the �new� and
�old� anti-AGE agents will help both in the under-
standing and the treatment of diabetic complications
that still constituts a major problem with life-threat-
ening impact worldwide.
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